ldentity

PROJECT ACRONYM: FlyRadar

Low-frequency PROJECT TITLE: multi-mode

(SAR and penetrating) radar onboard light-weight UAV for

Earth and Planetary exploration

HORIZON 2020 PROGRAMME:

MSCA-RISE-2020 - Research TOPIC:

and Innovation Staff Exchange

01 February 2021 START DATE:

DURATION: 48 months

International Research School COORDINATION:

of Planetary Sciences

Low-frequency multi-mode (SAR and penetrating) radar onboard light-weight UAV for Earth and Planetary exploration

https://www.facebook.com/flyradarproject

https://twitter.com/FlyRadar1

https://www.flyradarproject.eu/

project.office@flyradarproject.eu

This project has received funding from the European Union's Horizon 2020 research and innovation programme under MSCA-RISE2020 grant agreement No. 101007973

This leaflet reflects only the author's view. The Research Executive Agency (REA) is not responsible for any use that may be made of the information it contains.

WHAT IS FLYRADAR?

The project deals with the production of a dual-mode, low-frequency, radar installed on board of a light-weight UAV. The radar will operate into two modes: as Synthetic Aperture Radar (SAR) and as ground penetrating radar. Both instruments provide extremely interesting images that are extensively used in Earth and planetary observations.

However, these airborne systems are bulky and can be operated only from manned aircraft both planes and helicopters. On the other hand, the few drones that can sustain such a equipment are large and heavy. In both cases, the operations are expensive and has a complicate logistic. The quantum leap of FlyRadar consists of installing this radar system onboard small and light electric octocopters, providing low cost utilisation and easy operations. This affordable system will enlarge the user communities generating the possibility for an extensive use of FlyRadar taking advantage of the potentiality of this long-lasting innovation.

WHICH ARE THE PROJECT'S OBJECTIVES?

Two specific objectives

Scientific, technical and business oriented objectives

Obj-1
Apply the
comparative
knowledge of the
participants

Obj-2 Achieve ideal application of radar facility

Obj-3
Validate and adapt a
prototype using
terrestrial analogue

Obj-4
Identify the
economic feasibility
and impact of the
instrument for both
space and nonspace markets

Training and mobility objectives

T&M-1
Development of an initial research and training network

T&M-2
Multidisciplinary and
international
approach based on
the development of a
prototype

T&M-3 Support early career researchers

T&M-4
Development in a competitive business market environment.

WHAT IS THE FOLLOWED METHODOLOGY?

To assure effective management, the FlyRadar project is divided into 9 work packages.

WP1

Scientific aims for Mars Subsurface analyses and Terrestrial analogues

WP2

System Requirements

WP3

Design and manufacturing radar

WP4

Design and manufacturing drone

WP5

Model qualification campaign

WP6

Validation and test field campaign

WP7

Transfer of Knowledge, training and networking

WP8

Communication, Dissemination and Exploitation

WP9

Project Office